1.

		excretion	secretion	ĺ
1	one difference	(metabolic) waste or toxin / harmful or substance is to be removed from body or does not use vesicles	useful product or used in cell communication (e.g. to target tissues) or released from glands (ducts or ductless) or uses vesicles or remain in body	;
2	one example of a product	urea / carbon dioxide / water / bile <i>pigment</i> / named example	hormone / enzyme / antibodies / mucus / bile <i>salts</i> / neurotransmitter / named example	;
3	one similarity	requires ATP or (involved in) homed or (compounds) produced produced by metabor cross membrane / n through membrane / (may be) transport	ostasis leed by cell(s) / olism / need to eed to move / need to leave cell ted in blood	;;

One mark per row.

CREDIT converse statements on either side or unmatched statements for each

- *I IGNORE* name or type of product without qualification **DO NOT CREDIT** any ref to egestion in 'excretion'
- 2 IGNORE sweat / urine / bile / saliva / salt / (named) digestive juice
- *3* **CREDIT** method of leaving cell e.g. exocytosis **IGNORE** going into cells (as some excretory products do)

2. (i) Max 1 if referring to insulin receptors

1 unable to produce (enough) insulin / do not secrete insulin / produces ineffective insulin;

DO NOT CREDIT excrete' as incorrect

2 insulin-producing cells / beta cells / islets of Langerhans, not functioning (correctly) / damaged / destroyed / attacked;

> ALLOW lack of beta cells / ref to b cells DO NOT CREDIT alpha cells / B cells (if lymphocytes implied)

3 by (body's own) immune system / by (body's own) antibodies / auto-immune disease;

CREDIT description

- 4 (idea of) family history / genetic / hereditary;
- 5 (condition can be) triggered by, virus / environmental factor;

e.g.

- shock
- drugs side effect
- (pancreatic) cancer
- infection / disease

(ii)	Mark the first 3 responses only		
1	increasing age / older / ageing / more prevalent over 40; DO NOT CREDIT age without 'older' implication		
2	(idea of) family history / genetic / hereditary;		
3	(more common in) males;		
4	(more common in) some ethnic groups / African / Afro-Caribbean / Asian / Hispanic / Oceanic;		
5	obese / overweight / fat around abdomen; <i>CREDIT</i> 'apple shaped'		
6	high / frequent, intake of, sugar / highly processed food / high GI food; IGNORE 'poor diet' / 'bad diet' / 'unhealthy diet' IGNORE fat / carbohydrate, in diet		
7	lack of physical activity / sedentary lifestyle;		
8	high blood pressure; CREDIT history of, heart attack / stroke		
9	excessive alcohol intake; idea of too much is needed	3 max	[5]

3.	(a)	1	myelin / myelinated / lipid / fatty (sheath);
			DO NOT CREDIT fatty acids
		2	(Schwann) cell, wrapped around / surrounds / AW, axon;
		3	except at nodes of Ranvier / (sheath) not continuous / presence of gaps (in the sheath);

must be in the context of structure rather than function (as many refer to it in context of saltatory conduction)

- 2 unmyelinated needs larger diameter to produce same speed;
- 3 comparative figs, all with units, to support either the general trend or the exception to the trend with the mollusc;

1 speed for myelinated $(25 / 30 / 35, m s^{-1})$ and 1 speed for unmyelinated $(3 / 30, m s^{-1})$ (allow m/s) or

calculated difference in speed between myelinated and unmyelinated (with units unless a multiple e.g. approx. \times 12)

2 max

(ii) 1 larger axon diameter produces great<u>er</u> speeds; ora needs to be a general statement

comparative figs, all with units, to support;
 2 diameters & speeds (both with units) for myelinated

- 0r

calculated difference in diameter for 2 stated speeds (**both with units unless** diameter is a multiple e.g. around $\times 1.4$ / around 140%)

type of neurone	diameter (µm)	speed (m s^{-1})	animal taxon
myelinated	4	25	mammal
myelinated	10	30	amphibian
myelinated	14	35	amphibian

or

2 diameters & speeds (both with units) for unmyelinated or

calculated difference in diameter for 2 stated speeds (both with units unless diameter is a multiple e.g. about \times 10)

type of neurone	diameter (µm)	speed (m s ^{-1})	animal taxon
unmyelinated	15	3	mammal
unmyelinated	1 000	30	mollusc

- (c) (i) **1** increased <u>kinetic energy</u> $/ \underline{KE}$ so,
 - ions <u>diffuse</u>, across (axon) membrane / into neurone / into cell / between nodes / along neurone, more quickly
 - or
 - faster movement of (neurotransmitter) vesicles / exocytosis (of neurotransmitter)
 - or
 - neurotransmitter diffuses more quickly across, synapse / synaptic cleft
 - 0*r*
 - neurotransmitter (ACh) broken down by enzyme (acetylcholinesterase) more quickly;
 - 2 faster <u>diffusion</u> of ions leads to,
 - faster depolarisation
 - or
 - shorter duration of action potential
 - or
 - shorter refractory period
 - or •
 - faster repolarisation;

description of ion movement must be correct (e.g. Na^+ in for depolarisation / Ca^{2+} into presynaptic knob)

1 max

(ii) **DO NOT CREDIT** general denaturation of proteins / enzymes

- 1 ion, channels / pumps, disrupted / denatured / no longer function;
- 2 fluidity of, membrane / phospholipid / bilayer, disrupted; *IGNORE leaky membrane unless qualified*
- **3** (named) synaptic enzymes denatured;

	IGNORE ref to influx of Na^+ and events when action potential arrives at the synaptic knob - start when the Ca^{2+} channels open		
1	calcium channels open;		
2	Ca ²⁺ / Ca ⁺⁺ / calcium ions, enter / diffuse into, DO NOT CREDIT 'calcium' alone DO NOT CREDIT Ca ⁺ DO NOT CREDIT 'enter membrane' - must cross it		
3	acetylcholine / ACh / neurotransmitter, in vesicle(s);		
4	(synaptic) vesicles move towards <u>presynaptic</u> membrane; <i>CREDIT pre-synaptic</i>		
5	<pre>vesicles fuse with membrane; DO NOT CREDIT attach / bind / join 'vesicles move and fuse with presynaptic membrane' = mps 4 & 5 'vesicles move and fuse with membrane' = mp 5 only</pre>		
6	release acetylcholine, by exocytosis, into synaptic cleft;		
QW	'C – technical terms used appropriately and spelt correctly; Use of three terms from: channel(s), vesicle(s), neurotransmitter, presynaptic / pre-synaptic, exocytosis, cleft,	1	[4]
(a)	islets of Langerhans;	1	
(b)	glucagon;	1	

4.

5.

[8]

PMT

6.	(a)	A axon B cell b	terminal / synaptic knob / synaptic bulb; body / centron;	2	
	(b)	<i>at X</i> : sodium cha potential di	nnels open and sodium ions move into neurone; fference rises from –70mV to 30mV;		
		<i>at Y</i> : potassium c potential di	channels open and potassium ions move out of neurone; fference falls from 30mV to -76mV;		
		AVP;; e.g.	ref. to voltage gated channels ref to movement by diffusion / passively ref to electrochemical gradient	4	
	(c)	<i>effect</i> : myelinated ref. to one s	fibres conduct more quickly than unmyelinated / AW; set of comparative figures from table;		
		<i>explanation</i> myelin shea lack of sodi depolarisati (so) longer	a - max 4 ath acts as (electrical) insulator; ium and potassium gates in myelinated region; ion occurs at nodes of Ranvier only; local circuits;		
		(action pote	ential) jumps from one node to another / saltatory conduction;	5	[11]
7.	(i)	A 3 B 2			
		C 1;		1	

(ii)	Α	1	(voltage gated) sodium channels open;
		2	sodium (ions) enter (axon);
		3	positive feedback/more sodium channels open;
		4	depolarisation/description of depolarisation;
		5	sodium channels close;
		6	ref to $+40 \text{ mV}$;

B	7	(voltage gated) potassium channels open;
	8	potassium (ions) move out (of axon);
	9	positive feedback/more potassium channels open;

only award marking points 3 or 9, not both

- repolarisation/description of repolarisation; beyond -65 mV/hyperpolarisation/AW; 10
- 11

		С	12 13 14	Na/K pump (helps to), restore/maintain, resting potential; membrane more permeable to potassium ions (at resting potential); (many) potassium channels open (at resting potential);	max 5	[6]
8.	1 2 3 4 5 <i>mar</i> 6 7 8 9 10 11 12 13 14 15	sodium toward causes, (more) sodium ref to le one wa ref refr ref to in depolat impern ref to n longer saltaton AVP; e AVP; r distanc	n <u>ions</u> ls, rest , depol sodiu n (ions <i>ints 3-</i> ocal ci ny tran ractory nsulati risatio neable odes c local c ry con e.g. fev ref. to ce betv – legi l	 (inside axon), move/diffuse ing/negative region; larisation of this region/change of PD to reach threshold value; m channels open;) move in; 5 only available if linked to sodium ions moving within axon ircuits; smission; period/region of axon behind AP recovering; ing role of, myelin sheath/Schwann cells; n cannot occur through myelin/ to (Na⁺ and K⁺) ions/ora; of Ranvier; circuits; duction/AW; wer (Na⁺ and K⁺) ion channels in myelinated region/ora. absolute and relative refractory period, ref. to actual veen nodes (1 – 3mm); 	max 7 1	[8]
9.	(a)	for, fl musc ref. A AVP; small ref. la home migra feathe	lying/l le acti ATP/re ; e.g. e size c arge su cothern ation q er grov	novering/beating wings; vity/AW; spiration; explanation of energy demand of flight qualified; e.g. increases heat loss/ urface area to volume ratio nic qualified; qualified; wth qualified; e.g. ref. mitosis/protein synthesis	max 4	

(b)	descr D1 high(D2 low(e D3 high(D4 data o	ription (est) incidence of torpor/AW; est) oxygen consumption/AW; (est) body mass/AW; quote; 37	max
	expla E1 less f E2 (for) E3 more E4 as fat E5 (food	<i>ination</i> food used; less respiration/lower BMR/lower body temperature; food stored; t; l store/fat) for, migration/flight;	max 4
(c)	flying, eas can, escap food used therefore, incomplet	sier/uses less energy (with incomplete feathers if mass low); be predators/find food, (by flying); for feather growth; fat stores used/less food stored; te/missing feathers may reduce body mass;	max 2
(d)	yes (autumn) l (spring) lo data quote only gener but lose it homeother	high(est) mass birds have low(est) oxygen consumption; ow(est) mass birds have high(est) oxygen consumption; e mass plus O ₂ consumption; rate heat in proportion to (small) mass; in proportion to (large) surface area; ermic/small birds find it hard to keep warm;	max 3 [13]

10. \mathbf{Q} – glucagon; \mathbf{A} adrenaline \mathbf{R} – insulin;

[2]

2

7 max

1

[8]

11. 1 increase in, HCO_3^- / H^+ ;

- 2 carotid / aortic / medulla, receptors;
- 3 increase of frequency of impulses;
- 4 along, accelerator / sympathetic / phrenic, nerve;
- 5 to diaphragm and intercostal muscles;
- 6 faster breathing;
- 7 deeper breathing / increased tidal volume;
- 8 to sino-atrial node;
- 9 causes heart to beat faster;
- 10 increased stroke volume / stronger contraction;
- 11 more / faster, removal of carbon dioxide;
- 12 (blood carbon dioxide falls to) norm / set point;
- 13 negative feedback / homeostasis;
- 14 AVP; e.g. buffering effect of haemoglobin, ref chemoreceptors

QWC - clear well organised using specialist terms;

award the QWC mark if three of the following are used in the correct context

carotid aortic sympathetic diaphragm intercostal tidal volume sino-atrial node stroke volume negative feedback homeostasis

12.

(i)

S

dorsal root ganglion:

()	Т	relay / intermediate / bipolar / internuncial, neurone;	2
(ii)	1	rapid / fast acting;	
	2	short lived;	
	3	automatic / involuntary / no conscious thought / brain not involved;	
	4	not learned / innate / genetic / inborn / instinctive;	
	5	response the same each time / stereotypical;	
	6	AVP; e.g. safety / survival	3 max
(iii)	1	distortion / AW;	
. ,	2	Na ⁺ , gates / channels, open; A sodium / Na	
	3	Na ⁺ / sodium ions, enter: R sodium / Na	
	4	depolarisation / -65mV to +40mV;	
	5	receptor / generator, potential;	
	6	ref to threshold.	

7 action potential; *allow only if linked to idea of threshold reached* 3 max

(iv) neurotransmitter only, in presynaptic knob / released from presynaptic membrane: receptors only on postsynaptic membrane; ref to refractory period / hyperpolarisation; 2 max [10] 13. ADH / anti diuretic hormone ; reduces blood sugar levels / correct mechanism to achieve this; increases blood sugar levels / correct mechanism to achieve this ; ABA / abscisic acid ; auxin / IAA; [5] 14. ref to change in receptor; 1 creates, receptor potential / generator potential; 2 if greater than threshold value; 3 depolarisation / AW, (of axon / sensory / afferent, neurone); 4 5 ref to action potential (anywhere in answer); ref to, myelin sheath / myelinated neurones; 6 7 saltatory conduction / AW ; 8 ref to nodes of Ranvier ; 9 synapse with, motor / effector / efferent, neurone; 10 ref to, calcium ions / calcium channels; vesicles of neurotransmitter fuse with presynaptic membrane; 11 12 named neurotransmitter : 13 secretion / exocytosis (from presynaptic membrane); R release diffusion across synaptic cleft; 14 15 receptors on postsynaptic membrane; 16 depolarisation / AW, (of postsynaptic membrane / motor neurone); 17 ref to, neuromuscular junction / motor end plate ; 18 AVP ; e.g. ion movement, refractory period voltage-gated channels 8 max QWC – legible text with accurate spelling, punctuation and grammar ; 1 [9]

PMT

[5]

[6]

	7 8 9 10 11 12	conversion to glycogen / glycogenesis ; increased rate of glucose use in respiration ; ref to negative feedback ; glucose concentration kept below threshold value in glomerular filtrate ; all reabsorbed in PCT ; AVP ; inhibits glucagon secretion, suppresses gluconeogenesis	5 max
16.	(i)	A islet of Langerhans / α and β cells ; B (branch of pancreatic) duct ;	2
	(ii)	<i>endocrine</i> ductless gland ; hormones / named hormone ; e.g. insulin / glucagon into blood ;	
		<i>exocrine</i> enzymes / pancreatic juice / HCO ₃ ⁻ ; amylase / trypsin / chymotrypsin / lipase / carboxypeptidase; into duct;	
		if answers are interchanged then mark to 2 max	4 max
17.	1 2 3 4 5 6 7 8 9 10 11 12 13	ref to, medulla (oblongata) / cardiovascular centre (in brain) ; sympathetic nervous system / accelerator nerve (to heart) ; short preganglionic, neurone / fibre ; (transmitter substance) noradrenaline ; to sino atrial node (SAN) (in correct context) ; heart rate increases ; increased force of contraction ; ref to adrenaline ; parasympathetic nervous system / vagus nerve ; (transmitter substance) acetylcholine ; long preganglionic, neurone / fibre ; heart rate decreases ; AVP ; e.g. myogenic heart muscle / cardiac inhibitory centre	
		<i>if answers to sympathetic and parasympathetic are interchanged mark to 4 max</i>	7 max

detected by cells in pancreas;

insulin produced;

 β cells of islets of Langerhans;

secreted into, blood / circulation / HPV;

more glucose carriers in membrane ;

cells / named example, take up <u>more</u> glucose ;

15.

1

2 3

4

5

6

QWC – legible text with accurate spelling, punctuation and grammar ;

[8]

1

PMT

secretes hormones; **R** excrete (directly) into blood;

- 19. insulin produced by, microorganisms / bacteria; cheaper source of insulin / more reliable supply / ref to large scale production; more rapid response / shorter duration of response; less chance of, immune / allergic, response; R reference to rejection better for people who have developed a tolerance for animal insulin / less needed; R immune acceptable to people who have ethical, moral or religious objections; A vegetarians no risk of, infection / contamination;
- **20.** thick axons transmit impulses quicker than thin ones / AW; myelinated fibres quicker than unmyelinated / AW; invertebrates have slower speed of impulse / *ora*; ref to one set of comparative figures from table;
- 21. following an action potential; need to, redistribute sodium and potassium ions / restore resting potential; sodium voltage gated channels are closed; (during which) another impulse cannot be, generated / conducted; ensures impulses separated; determines maximum frequency of impulse transmission; impulse passes in one direction only along axon; AVP; e.g. ref to absolute and relative refractory periods

[3]

[2]

[2]

[4]